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Complex networks

Figure 2 |Yeast protein interaction network.A map of protein–protein interactions
18
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Yeast protein interaction network Internet topology in 2001

Attention focussing on unexpected commonality.



Scale-free paradigm

100 101 102 103 104 105
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

degree

pr
op

or
tio

n

100 101 102 103 104

10−7

10−5

10−3

10−1

degree
pr

op
or

tio
n

Loglog plot degree sequences Internet Movie Database and Internet

B Straight line: proportion pk vertices of degree k satisfies pk = ck−τ .

B Empirically: often τ ∈ (2, 3) found.



Small-world paradigm
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Distances in Strongly Connected Component WWW and IMDb in 2003.



Facebook
Largest virtual friendship network:
721 million active users,
69 billion friendship links.

Typical distances on average four:

Four degrees of separation!

Fairly homogeneous (within countries, distances similar).

Recent studies:
Ugander, Karrer, Backstrom, Marlow (2011): topology
Backstrom, Boldi, Rosa, Ugander, Vigna (2011): graph distances.



Four degrees of
separation
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Distances in FaceBook in different subgraphs
Backstrom, Boldi, Rosa, Ugander, Vigna (2011)



Modeling networks
Use random graphs to model uncertainty in formation

connections between elements.

B Static models:
Graph has fixed number of elements:

Configuration model and Inhomogeneous random graphs

B Dynamic models:
Graph has evolving number of elements:

Preferential attachment model

Universality??



Configuration model
B n number of vertices;
B d = (d1, d2, . . . , dn) sequence of degrees.

B Assign dj half-edges to vertex j. Assume total degree even, i.e.,

`n =
∑
i∈[n]

di even.

B Pair half-edges to create edges as follows:
Number half-edges from 1 to `n in any order.
First pair first half-edge at random to one of other `n − 1 half-edges.

B Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.
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Power-laws CM
B Special attention to power-law degrees, i.e., for τ > 1 and cτ

P(d1 ≥ k) = cτk
−τ+1(1 + o(1)).
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Loglog plot of degree sequence CM with i.i.d. degrees
n = 1, 000, 000 and τ = 2.5 and τ = 3.5, respectively.



Graph distances CM
Hn is graph distance between uniform pair of vertices in graph.

Theorem 1. [vdH-Hooghiemstra-Van Mieghem RSA05] When
ν = E[D(D − 1)]/E[D] ∈ (1,∞), conditionally on Hn <∞,

Hn

logν n

P−→ 1.

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. [vdH-Hooghiemstra-Znamenski EJP07, Norros+Reittu
04] When degrees have power-law distribution with τ ∈ (2, 3), con-
ditionally on Hn <∞,

Hn

log log n

P−→ 2

| log (τ − 2)|
.

For i.i.d. degrees having power-law tails, fluctuations are bounded.



x 7→ log log x grows extremely slowly
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Preferential attachment
At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to ith vertex is proportional to

Di(n− 1) + δ,

where Di(n) is degree vertex i at time n, δ > −m is parameter.

Yields power-law degree
sequence with exponent
τ = 3 + δ/m > 2.
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m = 2, δ = 0, τ = 3, n = 106



Competition
B Viral marketing aims to use social networks so as to excellerate
adoption of novel products.

B Observation: Often one product takes almost complete market.
Not always product of best quality:

Why?

B Setting:
– Model social network as random graph;
– Model dynamics as competing rumors spreading through net-
work, where vertices, once occupied by certain type, try to occupy
their neighbors at (possibly) random and i.i.d. time:

B Fastest type might correspond to best product.



Competition and rumors
B In absence competition, dynamics is rumor spread on graph.

B Central role for spreading dynamics of such rumors=

first-passage percolation on graph with i.i.d. random weights.

B Main object of study: Cn is weight of smallest-weight path two
uniform connected vertices:

Cn = min
π : U1→U2

∑
e∈π

Ye,

where π is path in G, while (Ye)e∈E(G) are i.i.d. collection of weights.

B Focus here on exponential or deterministic weights.



Deterministic spreading
Theorem 3. [Baroni-vdH-Komjáthy (2014)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory with
deterministic traversal times. Without loss of generality, assume
that traversal time type 1 is 1, and of type 2 is λ ≥ 1.

Fastest types wins majority vertices, i.e., for λ > 1,

N1(n)

n

P−→ 1.

Number of vertices for losing type 2 satisfies that there exists ran-
dom variable Z s.t.

log(N2(n))

(log n)2/(λ+1)Cn

d−→ Z.

B Here, Cn is some random oscillatory sequence.



Deterministic spreading
Theorem 4. [vdH-Komjáthy (2014)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory with
deterministic equal traversal times.

B When starting locations of types are sufficiently different,

N1(n)

n

d−→ I ∈ {0, 1},

and number of vertices for losing type satisfies that exists Cn s.t.
whp

log(Nlos(n))

Cn log n

d−→ Z.

B When starting locations are sufficiently similar, coexistence oc-
curs, i.e., there exist 0 < c1, c2 < 1 s.t. whp

N1(n)

n
,
N2(n)

n
∈ (c1, c2).



Markovian spreading
Theorem 5. [Deijfen-vdH (2013)] Fix τ ∈ (2, 3).

Consider competition model, where types compete for territory at
fixed, but possibly unequal rates. Then, each of types wins majority
vertices with positive probability:

N1

n

d−→ I ∈ {0, 1}.

Number of vertices for losing type converges in distribution:

Nlos(n)
d−→ Nlos ∈ N.

The winner takes it all, the loser’s standing small...

B Who wins is determined by location of starting point types:

Location, location, location!



Neighborhoods CM

B Important ingredient in proof is description local neighborhood of
uniform vertex U1 ∈ [n]. Its degree has distribution DU1

d
= D.

B Take any of DU1 neighbors a of U1. Law of number of forward
neighbors of a, i.e., Ba = Da − 1, is approximately

P(Ba = k) ≈ (k + 1)∑
i∈[n] di

∑
i∈[n]

1{di=k+1}
P−→ (k + 1)

E[D]
P(D = k + 1).

Equals size-biased version of D minus 1. Denote this by D? − 1.



Local tree-structure CM
B Forward neighbors of neighbors of U1 are close to i.i.d. Also
forward neighbors of forward neighbors have asymptotically same
distribution...

B Conclusion: Neighborhood looks like branching process with off-
spring distribution D? − 1 (except for root, which has offspring D.)

B τ ∈ (2, 3) : Infinite-mean BP, which has double exponential
growth of generation sizes:

(τ − 2)k log(Zk ∨ 1)
a.s.−→ Y ∈ (0,∞).

B In absence of competition, it takes each of types about log log n
| log (τ−2)|

steps to reach vertex of maximal degree.

B Type that reaches vertices of highest degrees (=hubs) first wins.
When λ > 1, fastest type wins whp.



Proof Winner takes it all
Theorem 6. [Bhamidi-vdH-Hooghiemstra AoAP10]. Fix τ ∈ (2, 3).

Then,
Cn

d−→ C∞,
for some limiting random variable C∞ :

Super efficient rumor spreading.

B C∞
d
= V1 + V2, where V1, V2 are i.i.d. explosion times of CTBP

starting from vertices U1, U2. Then,

I = 1{V1<λV2}.

Law of Nlos much more involved, as competition changes dynamics
after winning type has found hubs.



Conclusions
B Networks useful to interpret real-world phenomena: competition.

B Unexpected commonality networks: scale free and small worlds.

B Random graph models: Explain properties real-world networks:

Universality?

Example: Distances in preferential attachment model similar to
those in configuration model with same degrees.
Poster Alessandro Garavaglia diameters in scale-free CM & PAM.

Poster Clara Stegehuis on more realistic model for real-world net-
works on mesoscopic scale.

B Book: Random Graphs and Complex Networks
http://www.win.tue.nl/∼rhofstad/NotesRGCN.html


