

Information Diffusion on Random Graphs:
Small Worlds, Percolation and Competition
Remco van der Hofstad

Simons Conference on Random Graph Processes, May 9-12, 2016, UT Austin

Complex networks

Yeast protein interaction network

Internet topology in 2001

Attention focussing on unexpected commonality.

Scale-free paradigm

Loglog plot degree sequences Internet Movie Database and Internet
\triangleright Straight line: proportion p_{k} vertices of degree k satisfies $p_{k}=c k^{-\tau}$.
\triangleright Empirically: often $\tau \in(2,3)$ found.

Small-world paradigm

Distances in Strongly Connected Component WWW and IMDb in 2003.

Facebook

Largest virtual friendship network:
721 million active users, 69 billion friendship links.

Typical distances on average four:

Four degrees of separation!

Fairly homogeneous (within countries, distances similar).

Recent studies:
Ugander, Karrer, Backstrom, Marlow (2011): topology
Backstrom, Boldi, Rosa, Ugander, Vigna (2011): graph distances.

Four degrees of separation

Distances in FaceBook in different subgraphs
Backstrom, Boldi, Rosa, Ugander, Vigna (2011)

Modeling networks

Use random graphs to model uncertainty in formation connections between elements.
\triangleright Static models:
Graph has fixed number of elements:
Configuration model and Inhomogeneous random graphs
\triangleright Dynamic models:
Graph has evolving number of elements:
Preferential attachment model

Universality??

Configuration model

$\triangleright n$ number of vertices;
$\triangleright \boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ sequence of degrees.
\triangleright Assign d_{j} half-edges to vertex j. Assume total degree even, i.e.,

$$
\ell_{n}=\sum_{i \in[n]} d_{i} \quad \text { even. }
$$

\triangleright Pair half-edges to create edges as follows:
Number half-edges from 1 to ℓ_{n} in any order.
First pair first half-edge at random to one of other $\ell_{n}-1$ half-edges.
\triangleright Continue with second half-edge (when not connected to first) and so on, until all half-edges are connected.

Power-laws CM

\triangleright Special attention to power-law degrees, i.e., for $\tau>1$ and c_{τ}

$$
\mathbb{P}\left(d_{1} \geq k\right)=c_{\tau} k^{-\tau+1}(1+o(1)) .
$$

Loglog plot of degree sequence CM with i.i.d. degrees
$n=1,000,000$ and $\tau=2.5$ and $\tau=3.5$, respectively.

Graph distances CM

H_{n} is graph distance between uniform pair of vertices in graph.
Theorem 1. [vdH-Hooghiemstra-Van Mieghem RSA05] When $\nu=\mathbb{E}[D(D-1)] / \mathbb{E}[D] \in(1, \infty)$, conditionally on $H_{n}<\infty$,

$$
\frac{H_{n}}{\log _{\nu} n} \xrightarrow{\mathbb{P}} 1 .
$$

For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. [vdH-Hooghiemstra-Znamenski EJP07, Norros+Reittu 04] When degrees have power-law distribution with $\tau \in(2,3)$, conditionally on $H_{n}<\infty$,

$$
\frac{H_{n}}{\log \log n} \xrightarrow{\mathbb{P}} \frac{2}{|\log (\tau-2)|} .
$$

For i.i.d. degrees having power-law tails, fluctuations are bounded.

$x \mapsto \log \log x$ grows extremely slowly

Plot of $x \mapsto \log x$ and $x \mapsto \log \log x$.

Preferential attachment

At time n, single vertex is added with m edges emanating from it. Probability that edge connects to i th vertex is proportional to

$$
D_{i}(n-1)+\delta,
$$

where $D_{i}(n)$ is degree vertex i at time $n, \delta>-m$ is parameter.

Yields power-law degree 100000 sequence with exponent 10000 $\tau=3+\delta / m>2$.

$$
m=2, \delta=0, \tau=3, n=10^{6}
$$

Competition

\triangleright Viral marketing aims to use social networks so as to excellerate adoption of novel products.
\triangleright Observation: Often one product takes almost complete market. Not always product of best quality:

Why?

\triangleright Setting:

- Model social network as random graph;
- Model dynamics as competing rumors spreading through network, where vertices, once occupied by certain type, try to occupy their neighbors at (possibly) random and i.i.d. time:
\triangleright Fastest type might correspond to best product.

Competition and rumors

\triangleright In absence competition, dynamics is rumor spread on graph.
\triangleright Central role for spreading dynamics of such rumors= first-passage percolation on graph with i.i.d. random weights.
\triangleright Main object of study: \mathcal{C}_{n} is weight of smallest-weight path two uniform connected vertices:

$$
\mathcal{C}_{n}=\min _{\pi: U_{1} \rightarrow U_{2}} \sum_{e \in \pi} Y_{e},
$$

where π is path in G, while $\left(Y_{e}\right)_{e \in E(G)}$ are i.i.d. collection of weights.
\triangleright Focus here on exponential or deterministic weights.

Deterministic spreading

Theorem 3. [Baroni-vdH-Komjáthy (2014)] Fix $\tau \in(2,3)$.
Consider competition model, where types compete for territory with deterministic traversal times. Without loss of generality, assume that traversal time type 1 is 1 , and of type 2 is $\lambda \geq 1$.

Fastest types wins majority vertices, i.e., for $\lambda>1$,

$$
\frac{N_{1}(n)}{n} \xrightarrow{\mathbb{P}} 1 .
$$

Number of vertices for losing type 2 satisfies that there exists random variable Z s.t.

$$
\frac{\log \left(N_{2}(n)\right)}{(\log n)^{2 /(\lambda+1)} C_{n}} \xrightarrow{d} Z .
$$

\triangleright Here, C_{n} is some random oscillatory sequence.

Deterministic spreading

Theorem 4. [vdH-Komjáthy (2014)] Fix $\tau \in(2,3)$.
Consider competition model, where types compete for territory with deterministic equal traversal times.
\triangleright When starting locations of types are sufficiently different,

$$
\frac{N_{1}(n)}{n} \xrightarrow{d} I \in\{0,1\},
$$

and number of vertices for losing type satisfies that exists C_{n} s.t. whp

$$
\frac{\log \left(N_{\operatorname{los}}(n)\right)}{C_{n} \log n} \xrightarrow{d} Z .
$$

\triangleright When starting locations are sufficiently similar, coexistence occurs, i.e., there exist $0<c_{1}, c_{2}<1$ s.t. whp

$$
\frac{N_{1}(n)}{n}, \frac{N_{2}(n)}{n} \in\left(c_{1}, c_{2}\right)
$$

Markovian spreading

Theorem 5. [Deijfen-vdH (2013)] Fix $\tau \in(2,3)$.
Consider competition model, where types compete for territory at fixed, but possibly unequal rates. Then, each of types wins majority vertices with positive probability:

$$
\frac{N_{1}}{n} \xrightarrow{d} I \in\{0,1\} .
$$

Number of vertices for losing type converges in distribution:

$$
N_{\mathrm{los}}(n) \xrightarrow{d} N_{\mathrm{los}} \in \mathbb{N} .
$$

The winner takes it all, the loser's standing small...
\triangleright Who wins is determined by location of starting point types:
Location, location, location!

Neighborhoods CM

\triangleright Important ingredient in proof is description local neighborhood of uniform vertex $U_{1} \in[n]$. Its degree has distribution $D_{U_{1}} \stackrel{d}{=} D$.
\triangleright Take any of $D_{U_{1}}$ neighbors a of U_{1}. Law of number of forward neighbors of a, i.e., $B_{a}=D_{a}-1$, is approximately

$$
\mathbb{P}\left(B_{a}=k\right) \approx \frac{(k+1)}{\sum_{i \in[n]} d_{i}} \sum_{i \in[n]} \mathbb{1}_{\left\{d_{i}=k+1\right\}} \xrightarrow{\mathbb{P}} \frac{(k+1)}{\mathbb{E}[D]} \mathbb{P}(D=k+1) .
$$

Equals size-biased version of D minus 1 . Denote this by $D^{\star}-1$.

Local tree-structure CM

\triangleright Forward neighbors of neighbors of U_{1} are close to i.i.d. Also forward neighbors of forward neighbors have asymptotically same distribution...
\triangleright Conclusion: Neighborhood looks like branching process with offspring distribution $D^{\star}-1$ (except for root, which has offspring D.)
$\triangleright \tau \in(2,3)$: Infinite-mean BP, which has double exponential growth of generation sizes:

$$
(\tau-2)^{k} \log \left(Z_{k} \vee 1\right) \xrightarrow{\text { a.s. }} Y \in(0, \infty) .
$$

\triangleright In absence of competition, it takes each of types about $\frac{\log \log n}{|\log (\tau-2)|}$ steps to reach vertex of maximal degree.
\triangleright Type that reaches vertices of highest degrees (=hubs) first wins. When $\lambda>1$, fastest type wins whp.

Proof Winner takes it all

Theorem 6. [Bhamidi-vdH-Hooghiemstra AoAP10]. Fix $\tau \in(2,3)$. Then,

$$
\mathcal{C}_{n} \xrightarrow{d} \mathcal{C}_{\infty},
$$

for some limiting random variable \mathcal{C}_{∞} :

Super efficient rumor spreading.

$\triangleright \mathcal{C}_{\infty} \stackrel{d}{=} V_{1}+V_{2}$, where V_{1}, V_{2} are i.i.d. explosion times of CTBP starting from vertices U_{1}, U_{2}. Then,

$$
I=\mathbb{1}_{\left\{V_{1}<\lambda V_{2}\right\}} .
$$

Law of $N_{\text {los }}$ much more involved, as competition changes dynamics after winning type has found hubs.

Conclusions

\triangleright Networks useful to interpret real-world phenomena: competition.
\triangleright Unexpected commonality networks: scale free and small worlds.
\triangleright Random graph models: Explain properties real-world networks: Universality?
Example: Distances in preferential attachment model similar to those in configuration model with same degrees.
Poster Alessandro Garavaglia diameters in scale-free CM \& PAM.
Poster Clara Stegehuis on more realistic model for real-world networks on mesoscopic scale.
\triangleright Book: Random Graphs and Complex Networks
http://www.win.tue.nl/~rhofstad/NotesRGCN.html

