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Complex networks

Yeast protein interaction network Internet topology in 2001

Attention focussing on unexpected commonality.
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Scale-free paradigm
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Loglog plot degree sequences Internet Movie Database and Internet

> Straight line: proportion p,. vertices of degree k satisfies p, = ck™".

> Empirically: often 7 € (2, 3) found.



Small-world paradigm
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Distances in Strongly Connected Component WWW and IMDb in 2003.



Facebook

Largest virtual friendship network:
721 million active users,
69 billion friendship links.

Typical distances on average four:
Four degrees of separation!

Fairly homogeneous (within countries, distances similar).

Recent studies:
Ugander, Karrer, Backstrom, Marlow (2011): topology
Backstrom, Boldi, Rosa, Ugander, Vigna (2011): graph distances.



Four degrees of
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Distances in FaceBook in different subgraphs
Backstrom, Boldi, Rosa, Ugander, Vigna (2011)



Modeling networks

Use random graphs to model uncertainty in formation

connections between elements.

> Static models:
Graph has fixed number of elements:

Configuration model and Inhomogeneous random graphs

> Dynamic models:
Graph has evolving number of elements:

Preferential attachment model

Universality??



Configuration model

> n number of vertices;
>d = (dy,ds, ...,d,) sequence of degrees.

> Assign d; half-edges to vertex j. Assume total degree even, i.e.,

ly=) d;  even.

i€[n]

> Pair half-edges to create edges as follows:
Number half-edges from 1 to /,, in any order.
First pair first half-edge at random to one of other /,, — 1 half-edges.

> Continue with second half-edge (when not connected to first)
and so on, until all half-edges are connected.
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Power-laws CM

> Special attention to power-law degrees, i.e., for 7 > 1 and ¢

P(d; > k) = ¢,k " (1 + o(1)).
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Loglog plot of degree sequence CM with i.i.d. degrees
n = 1,000,000 and 7 = 2.5 and 7 = 3.5, respectively.



Graph distances CM

H,, is graph distance between uniform pair of vertices in graph.
Theorem 1. [vdH-Hooghiemstra-Van Mieghem RSAQ05] When
v=E[D(D — 1)]/E[D] € (1, c0), conditionally on H,, < oo,

H, »
log, n

> 1.
For i.i.d. degrees having power-law tails, fluctuations are bounded.

Theorem 2. [vdH-Hooghiemstra-Znamenski EJP07, Norros+Reittu
04] When degrees have power-law distribution with 7 € (2, 3), con-
ditionally on H,, < oo,
H, & 2
loglogn |log (7 —2)|’

For i.i.d. degrees having power-law tails, fluctuations are bounded.



r +— loglog x grows extremely slowly
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Plot of z — log z and x — log log x.



Preferential attachment

At time n, single vertex is added with m edges emanating from it.
Probability that edge connects to ith vertex is proportional to

DZ<TL — 1) + 5,

where D;(n) is degree vertex ¢ at time n, 6 > —m is parameter.

Yields power-law degree 100000
sequence with exponent 10000
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Competition

> Viral marketing aims to use social networks so as to excellerate
adoption of novel products.

> Observation: Often one product takes almost complete market.
Not always product of best quality:

Why?

> Setting:

— Model social network as random graph;

— Model dynamics as competing rumors spreading through net-
work, where vertices, once occupied by certain type, try to occupy
their neighbors at (possibly) random and i.i.d. time:

> Fastest type might correspond to best product.



Competition and rumors

> In absence competition, dynamics is rumor spread on graph.

> Central role for spreading dynamics of such rumors=

first-passage percolation on graph with i.i.d. random weights.

> Main object of study: C, is weight of smallest-weight path two
uniform connected vertices:

= min g Y,,
T Ul%Ug

ecm

where 7 is path in &G, while (Y?).cz() are i.i.d. collection of weights.

> Focus here on exponential or deterministic weights.



Deterministic spreading

Theorem 3. [Baroni-vdH-Komjathy (2014)] Fix 7 € (2, 3).

Consider competition model, where types compete for territory with
deterministic traversal times. Without loss of generality, assume
that traversal time type 1is 1, and of type 2is A > 1.

Fastest types wins majority vertices, i.e., for A > 1,

Nl(”) P

> 1.

Number of vertices for losing type 2 satisfies that there exists ran-
dom variable 7 s.t.

log(Na(n))  d

(logn)2/0-0C, 4

> Here, (), is some random oscillatory sequence.



Deterministic spreading

Theorem 4. [vdH-Komjathy (2014)] Fix 7 € (2, 3).
Consider competition model, where types compete for territory with
deterministic equal traversal times.

> When starting locations of types are sufficiently different,
Nl(n)

d
» 1 € 10,1},
- {0.1)

and number of vertices for losing type satisfies that exists C), s.t.
whp
log(Nios(n))
C,logn
> When starting locations are sufficiently similar, coexistence oc-
curs, i.e., there exist 0 < ¢y, o < 1 s.t. whp
Nl(n) NQ(TL)

n ) n € (Cla 62)-

d
s /.




Markovian spreading

Theorem 5. [Deijfen-vdH (2013)] Fix 7 € (2, 3).

Consider competition model, where types compete for territory at
fixed, but possibly unequal rates. Then, each of types wins majority
vertices with positive probability:

N
L 4T e o, 1)
n

Number of vertices for losing type converges in distribution:

Nigs(n) -5 Nigs € N.

The winner takes it all, the loser’s standing small...

> Who wins is determined by location of starting point types:

Location, location, location!



Neighborhoods CM

> Important ingredient in proof is description local neighborhood of
uniform vertex U, € |n]. Its degree has distribution Dy, LD,

> Take any of Dy, neighbors a of U;,. Law of number of forward
neighbors of a, i.e., B, = D, — 1, is approximately

k+1 k+1
1€n| T

Equals size-biased version of D minus 1. Denote this by D* — 1.

i€[n]



Local tree-structure CM

> Forward neighbors of neighbors of U; are close to i.i.d. Also
forward neighbors of forward neighbors have asymptotically same
distribution...

> Conclusion: Neighborhood looks like branching process with off-
spring distribution D* — 1 (except for root, which has offspring D.)

> 7€ (2,3): Infinite-mean BP, which has double exponential
growth of generation sizes:

(1 —2)%log(Z, v 1) 25 Y € (0, 00).

log log n
|log (7—2)|

> In absence of competition, it takes each of types about
steps to reach vertex of maximal degree.

> Type that reaches vertices of highest degrees (=hubs) first wins.
When \ > 1, fastest type wins whp.



Proof Winner takes it all

Theorem 6. [Bhamidi-vdH-Hooghiemstra AoAP10]. Fix 7 € (2, 3).
Then,

d
Cn — Coo;

for some limiting random variable C. :

Super efficient rumor spreading.

> C, < Vi+ Vs, where Vi, V, are i.i.d. explosion times of CTBP
starting from vertices U, U,. Then,

I = Tq<nm)-

Law of N, much more involved, as competition changes dynamics
after winning type has found hubs.



Conclusions

> Networks useful to interpret real-world phenomena: competition.
> Unexpected commonality networks: scale free and small worlds.

> Random graph models: Explain properties real-world networks:
Universality?

Example: Distances in preferential attachment model similar to
those in configuration model with same degrees.
Poster Alessandro Garavaglia diameters in scale-free CM & PAM.

Poster Clara Stegehuis on more realistic model for real-world net-
works on mesoscopic scale.

> Book: Random Graphs and Complex Networks
http://www.win.tue.nl/~rhofstad/NotesRGCN.html



